If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10m^2+12m=20
We move all terms to the left:
10m^2+12m-(20)=0
a = 10; b = 12; c = -20;
Δ = b2-4ac
Δ = 122-4·10·(-20)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{59}}{2*10}=\frac{-12-4\sqrt{59}}{20} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{59}}{2*10}=\frac{-12+4\sqrt{59}}{20} $
| 50y^2-10y=0 | | 3x+28=3+6x-5 | | m^2-12m+25=-2 | | (4x+2)x=210 | | 20-5(6x-5)=-5 | | 6-9x-4=-47+3x-11 | | 36-7x=9x | | 15x-33=9x+45 | | y/0.5=120 | | x^2-3x+1.44=0 | | 0=4w2-3w-10 | | -4.8=2.33t-4.9t^2 | | 0=3y2+26y-35 | | 2/x=19/4 | | 13x-2=7x-14 | | 3x+5(x+9)-4x.X=-5 | | 3x+5(-5+9)-4x.X=-5 | | (3(x+4))/4=4x-2 | | 2-3x*7=8x+2 | | 7/35=4/y | | 9x2+12x+3=0 | | 6(2-4x)+10x=-8+21-6x | | 42=6^9x | | X+9/8=7/4+x-3/5 | | 6c-24=108 | | 25a^2+20a+4= | | 8-2z=3-z | | 4/7-1/4=3/5x | | 4/7+1/5x-1/4=4/5x | | X-5=x-7 | | 2(b+3)+2b=26, | | 2x4=8+6=14/3 |